Uniqueness on linear difference polynomials of meromorphic functions
Suppose that $f(z)$ is a meromorphic function with hyper order $\sigma_{2}(f)<1$. Let $L(z,f)=b_1(z)f(z+c_1)+b_2(z)f(z+c_2)+\cdots+b_n(z)f(z+c_n)$ be a linear difference polynomial, where $b_1(z), b_2(z),\cdots, b_n(z)$ are nonzero small functions relative to $f(z)$, and $c_1, c_2,\cdots,c_n$ a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-02-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | http://www.aimspress.com/article/doi/10.3934/math.2021230?viewType=HTML |