Uniqueness on linear difference polynomials of meromorphic functions

Suppose that $f(z)$ is a meromorphic function with hyper order $\sigma_{2}(f)<1$. Let $L(z,f)=b_1(z)f(z+c_1)+b_2(z)f(z+c_2)+\cdots+b_n(z)f(z+c_n)$ be a linear difference polynomial, where $b_1(z), b_2(z),\cdots, b_n(z)$ are nonzero small functions relative to $f(z)$, and $c_1, c_2,\cdots,c_n$ a...

Full description

Bibliographic Details
Main Authors: Ran Ran Zhang, Chuang Xin Chen, Zhi Bo Huang
Format: Article
Language:English
Published: AIMS Press 2021-02-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/math.2021230?viewType=HTML