Effect of Label Noise on the Machine-Learned Classification of Earthquake Damage
Automated classification of earthquake damage in remotely-sensed imagery using machine learning techniques depends on training data, or data examples that are labeled correctly by a human expert as containing damage or not. Mislabeled training data are a major source of classifier error due to the u...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-08-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/9/8/803 |