Positive symmetric solutions of singular semipositone boundary value problems

Using the method of upper and lower solutions, we prove that the singular boundary value problem, \[ -u'' = f(u) ~ u^{-\alpha} \quad \textrm{in} \quad (0, 1), \quad u'(0) = 0 = u(1) \, , \] has a positive solution when $0 < \alpha < 1$ and $f : \mathbb{R} \to \mathbb{R}$ is an...

Full description

Bibliographic Details
Main Authors: M. Rudd, Christopher Tisdell
Format: Article
Language:English
Published: University of Szeged 2009-10-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=426