Positive symmetric solutions of singular semipositone boundary value problems
Using the method of upper and lower solutions, we prove that the singular boundary value problem, \[ -u'' = f(u) ~ u^{-\alpha} \quad \textrm{in} \quad (0, 1), \quad u'(0) = 0 = u(1) \, , \] has a positive solution when $0 < \alpha < 1$ and $f : \mathbb{R} \to \mathbb{R}$ is an...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2009-10-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=426 |