Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation

Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis....

Full description

Bibliographic Details
Main Authors: Da Ma, Holly E. Holmes, Manuel J. Cardoso, Marc Modat, Ian F. Harrison, Nick M. Powell, James M. O’Callaghan, Ozama Ismail, Ross A. Johnson, Michael J. O’Neill, Emily C. Collins, Mirza F. Beg, Karteek Popuri, Mark F. Lythgoe, Sebastien Ourselin
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-01-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnins.2019.00011/full
id doaj-9b84e61895284ebd9c09e6d1b92b0f14
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Da Ma
Da Ma
Da Ma
Holly E. Holmes
Manuel J. Cardoso
Manuel J. Cardoso
Marc Modat
Marc Modat
Ian F. Harrison
Nick M. Powell
Nick M. Powell
James M. O’Callaghan
Ozama Ismail
Ross A. Johnson
Michael J. O’Neill
Emily C. Collins
Mirza F. Beg
Karteek Popuri
Mark F. Lythgoe
Sebastien Ourselin
Sebastien Ourselin
spellingShingle Da Ma
Da Ma
Da Ma
Holly E. Holmes
Manuel J. Cardoso
Manuel J. Cardoso
Marc Modat
Marc Modat
Ian F. Harrison
Nick M. Powell
Nick M. Powell
James M. O’Callaghan
Ozama Ismail
Ross A. Johnson
Michael J. O’Neill
Emily C. Collins
Mirza F. Beg
Karteek Popuri
Mark F. Lythgoe
Sebastien Ourselin
Sebastien Ourselin
Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
Frontiers in Neuroscience
in vivo
ex vivo
structural parcellation
longitudinal
disease progression
treatment effect
author_facet Da Ma
Da Ma
Da Ma
Holly E. Holmes
Manuel J. Cardoso
Manuel J. Cardoso
Marc Modat
Marc Modat
Ian F. Harrison
Nick M. Powell
Nick M. Powell
James M. O’Callaghan
Ozama Ismail
Ross A. Johnson
Michael J. O’Neill
Emily C. Collins
Mirza F. Beg
Karteek Popuri
Mark F. Lythgoe
Sebastien Ourselin
Sebastien Ourselin
author_sort Da Ma
title Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
title_short Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
title_full Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
title_fullStr Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
title_full_unstemmed Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
title_sort study the longitudinal in vivo and cross-sectional ex vivo brain volume difference for disease progression and treatment effect on mouse model of tauopathy using automated mri structural parcellation
publisher Frontiers Media S.A.
series Frontiers in Neuroscience
issn 1662-453X
publishDate 2019-01-01
description Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.
topic in vivo
ex vivo
structural parcellation
longitudinal
disease progression
treatment effect
url https://www.frontiersin.org/article/10.3389/fnins.2019.00011/full
work_keys_str_mv AT dama studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT dama studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT dama studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT hollyeholmes studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT manueljcardoso studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT manueljcardoso studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT marcmodat studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT marcmodat studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT ianfharrison studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT nickmpowell studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT nickmpowell studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT jamesmocallaghan studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT ozamaismail studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT rossajohnson studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT michaeljoneill studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT emilyccollins studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT mirzafbeg studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT karteekpopuri studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT markflythgoe studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT sebastienourselin studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
AT sebastienourselin studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation
_version_ 1725437164404080640
spelling doaj-9b84e61895284ebd9c09e6d1b92b0f142020-11-25T00:02:41ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2019-01-011310.3389/fnins.2019.00011408510Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural ParcellationDa Ma0Da Ma1Da Ma2Holly E. Holmes3Manuel J. Cardoso4Manuel J. Cardoso5Marc Modat6Marc Modat7Ian F. Harrison8Nick M. Powell9Nick M. Powell10James M. O’Callaghan11Ozama Ismail12Ross A. Johnson13Michael J. O’Neill14Emily C. Collins15Mirza F. Beg16Karteek Popuri17Mark F. Lythgoe18Sebastien Ourselin19Sebastien Ourselin20Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomSchool of Engineering Science, Simon Fraser University, Burnaby, BC, CanadaCentre for Advanced Biomedical Imaging, University College London, London, United KingdomTranslational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomSchool of Biomedical Engineering and Imaging Sciences, King’s College London, London, United KingdomTranslational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomSchool of Biomedical Engineering and Imaging Sciences, King’s College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomTranslational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomTailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United StatesEli Lilly & Co. Ltd., Erl Wood Manor, Windlesham, United KingdomTailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United StatesTailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United StatesTailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United StatesCentre for Advanced Biomedical Imaging, University College London, London, United KingdomTranslational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomSchool of Biomedical Engineering and Imaging Sciences, King’s College London, London, United KingdomBrain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.https://www.frontiersin.org/article/10.3389/fnins.2019.00011/fullin vivoex vivostructural parcellationlongitudinaldisease progressiontreatment effect