Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis....
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-01-01
|
Series: | Frontiers in Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fnins.2019.00011/full |
id |
doaj-9b84e61895284ebd9c09e6d1b92b0f14 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Da Ma Da Ma Da Ma Holly E. Holmes Manuel J. Cardoso Manuel J. Cardoso Marc Modat Marc Modat Ian F. Harrison Nick M. Powell Nick M. Powell James M. O’Callaghan Ozama Ismail Ross A. Johnson Michael J. O’Neill Emily C. Collins Mirza F. Beg Karteek Popuri Mark F. Lythgoe Sebastien Ourselin Sebastien Ourselin |
spellingShingle |
Da Ma Da Ma Da Ma Holly E. Holmes Manuel J. Cardoso Manuel J. Cardoso Marc Modat Marc Modat Ian F. Harrison Nick M. Powell Nick M. Powell James M. O’Callaghan Ozama Ismail Ross A. Johnson Michael J. O’Neill Emily C. Collins Mirza F. Beg Karteek Popuri Mark F. Lythgoe Sebastien Ourselin Sebastien Ourselin Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation Frontiers in Neuroscience in vivo ex vivo structural parcellation longitudinal disease progression treatment effect |
author_facet |
Da Ma Da Ma Da Ma Holly E. Holmes Manuel J. Cardoso Manuel J. Cardoso Marc Modat Marc Modat Ian F. Harrison Nick M. Powell Nick M. Powell James M. O’Callaghan Ozama Ismail Ross A. Johnson Michael J. O’Neill Emily C. Collins Mirza F. Beg Karteek Popuri Mark F. Lythgoe Sebastien Ourselin Sebastien Ourselin |
author_sort |
Da Ma |
title |
Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation |
title_short |
Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation |
title_full |
Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation |
title_fullStr |
Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation |
title_full_unstemmed |
Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation |
title_sort |
study the longitudinal in vivo and cross-sectional ex vivo brain volume difference for disease progression and treatment effect on mouse model of tauopathy using automated mri structural parcellation |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Neuroscience |
issn |
1662-453X |
publishDate |
2019-01-01 |
description |
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis. |
topic |
in vivo ex vivo structural parcellation longitudinal disease progression treatment effect |
url |
https://www.frontiersin.org/article/10.3389/fnins.2019.00011/full |
work_keys_str_mv |
AT dama studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT dama studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT dama studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT hollyeholmes studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT manueljcardoso studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT manueljcardoso studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT marcmodat studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT marcmodat studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT ianfharrison studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT nickmpowell studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT nickmpowell studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT jamesmocallaghan studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT ozamaismail studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT rossajohnson studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT michaeljoneill studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT emilyccollins studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT mirzafbeg studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT karteekpopuri studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT markflythgoe studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT sebastienourselin studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation AT sebastienourselin studythelongitudinalinvivoandcrosssectionalexvivobrainvolumedifferencefordiseaseprogressionandtreatmenteffectonmousemodeloftauopathyusingautomatedmristructuralparcellation |
_version_ |
1725437164404080640 |
spelling |
doaj-9b84e61895284ebd9c09e6d1b92b0f142020-11-25T00:02:41ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2019-01-011310.3389/fnins.2019.00011408510Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural ParcellationDa Ma0Da Ma1Da Ma2Holly E. Holmes3Manuel J. Cardoso4Manuel J. Cardoso5Marc Modat6Marc Modat7Ian F. Harrison8Nick M. Powell9Nick M. Powell10James M. O’Callaghan11Ozama Ismail12Ross A. Johnson13Michael J. O’Neill14Emily C. Collins15Mirza F. Beg16Karteek Popuri17Mark F. Lythgoe18Sebastien Ourselin19Sebastien Ourselin20Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomSchool of Engineering Science, Simon Fraser University, Burnaby, BC, CanadaCentre for Advanced Biomedical Imaging, University College London, London, United KingdomTranslational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomSchool of Biomedical Engineering and Imaging Sciences, King’s College London, London, United KingdomTranslational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomSchool of Biomedical Engineering and Imaging Sciences, King’s College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomTranslational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomCentre for Advanced Biomedical Imaging, University College London, London, United KingdomTailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United StatesEli Lilly & Co. Ltd., Erl Wood Manor, Windlesham, United KingdomTailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United StatesTailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United StatesTailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United StatesCentre for Advanced Biomedical Imaging, University College London, London, United KingdomTranslational Imaging Group, Centre for Medical Image Computing, University College London, London, United KingdomSchool of Biomedical Engineering and Imaging Sciences, King’s College London, London, United KingdomBrain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.https://www.frontiersin.org/article/10.3389/fnins.2019.00011/fullin vivoex vivostructural parcellationlongitudinaldisease progressiontreatment effect |