Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment of Humanoid Robot
We report the development of a biped-robot system with real-time surface recognition and walking-speed adjustment to control the robot motion during walking on different types of surfaces. Four types of test surfaces (i.e. rough foam (RF), smooth foam (SF), thin carpet (TC) and smooth table (ST)) ar...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9195819/ |
id |
doaj-9b4331d040a148cb8c018125e157200e |
---|---|
record_format |
Article |
spelling |
doaj-9b4331d040a148cb8c018125e157200e2021-03-30T03:56:11ZengIEEEIEEE Access2169-35362020-01-01816964016965110.1109/ACCESS.2020.30239959195819Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment of Humanoid RobotSandip Bhattacharya0https://orcid.org/0000-0002-3968-2681Aiwen Luo1https://orcid.org/0000-0002-9158-8406Sunandan Dutta2Mitiko Miura-Mattausch3https://orcid.org/0000-0002-9244-9539Hans Jurgen Mattausch4https://orcid.org/0000-0001-5712-1020HiSIM Research Center, Hiroshima University, Hiroshima, JapanHiSIM Research Center, Hiroshima University, Hiroshima, JapanHiSIM Research Center, Hiroshima University, Hiroshima, JapanHiSIM Research Center, Hiroshima University, Hiroshima, JapanHiSIM Research Center, Hiroshima University, Hiroshima, JapanWe report the development of a biped-robot system with real-time surface recognition and walking-speed adjustment to control the robot motion during walking on different types of surfaces. Four types of test surfaces (i.e. rough foam (RF), smooth foam (SF), thin carpet (TC) and smooth table (ST)) are considered in the system verification. For surface-property recognition we use ultra-thin-membrane force sensors, mounted under the robot feet, and a classification circuit, implemented on an Arduino Uno board. The walking-speed adjustment is performed with an external control circuit, which receives the surface-recognition signal from the classification circuit and sends a feedback signal to the robot controller (i.e. RCB-4HV) for adjusting the walking speed accordingly. We applied the nearest-neighbor-classification algorithm with the Euclidean-distance measure and a set of reference data, to distinguish between the four test surfaces based on the robot's real-time walking pattern. The mean absolute value (MAV) feature descriptor is used to generate four different types of reference walking pattern, corresponding to the four different surfaces. In our experiments it is observed, that the ST surface performs best in terms of average surface-recognition latency (SRL) (~3.6 sec) during walking on same surface. On the other hand, the surface transition from TC to SF showed minimum surface-transition latency (STL) (~8.2 sec) with correct speed change from 135 to 160 robot-motor-configuration frames per stride (frames/stride), while the transition from SF to TC surfaces showed maximum STL (~11.6 sec) including speed change from 160 to 135 frames/stride. The obtained results are useful for development of the next generation of surface-recognition and speed-adjustment systems, implemented in humanoid robots to enable balanced and stable walking in environments with multiple changed surface properties.https://ieeexplore.ieee.org/document/9195819/Humanoid robotforce sensormicrocomputerEuclidean distanceapplication specific motion file (ASMF) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sandip Bhattacharya Aiwen Luo Sunandan Dutta Mitiko Miura-Mattausch Hans Jurgen Mattausch |
spellingShingle |
Sandip Bhattacharya Aiwen Luo Sunandan Dutta Mitiko Miura-Mattausch Hans Jurgen Mattausch Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment of Humanoid Robot IEEE Access Humanoid robot force sensor microcomputer Euclidean distance application specific motion file (ASMF) |
author_facet |
Sandip Bhattacharya Aiwen Luo Sunandan Dutta Mitiko Miura-Mattausch Hans Jurgen Mattausch |
author_sort |
Sandip Bhattacharya |
title |
Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment of Humanoid Robot |
title_short |
Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment of Humanoid Robot |
title_full |
Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment of Humanoid Robot |
title_fullStr |
Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment of Humanoid Robot |
title_full_unstemmed |
Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment of Humanoid Robot |
title_sort |
force-sensor-based surface recognition with surface-property-dependent walking-speed adjustment of humanoid robot |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2020-01-01 |
description |
We report the development of a biped-robot system with real-time surface recognition and walking-speed adjustment to control the robot motion during walking on different types of surfaces. Four types of test surfaces (i.e. rough foam (RF), smooth foam (SF), thin carpet (TC) and smooth table (ST)) are considered in the system verification. For surface-property recognition we use ultra-thin-membrane force sensors, mounted under the robot feet, and a classification circuit, implemented on an Arduino Uno board. The walking-speed adjustment is performed with an external control circuit, which receives the surface-recognition signal from the classification circuit and sends a feedback signal to the robot controller (i.e. RCB-4HV) for adjusting the walking speed accordingly. We applied the nearest-neighbor-classification algorithm with the Euclidean-distance measure and a set of reference data, to distinguish between the four test surfaces based on the robot's real-time walking pattern. The mean absolute value (MAV) feature descriptor is used to generate four different types of reference walking pattern, corresponding to the four different surfaces. In our experiments it is observed, that the ST surface performs best in terms of average surface-recognition latency (SRL) (~3.6 sec) during walking on same surface. On the other hand, the surface transition from TC to SF showed minimum surface-transition latency (STL) (~8.2 sec) with correct speed change from 135 to 160 robot-motor-configuration frames per stride (frames/stride), while the transition from SF to TC surfaces showed maximum STL (~11.6 sec) including speed change from 160 to 135 frames/stride. The obtained results are useful for development of the next generation of surface-recognition and speed-adjustment systems, implemented in humanoid robots to enable balanced and stable walking in environments with multiple changed surface properties. |
topic |
Humanoid robot force sensor microcomputer Euclidean distance application specific motion file (ASMF) |
url |
https://ieeexplore.ieee.org/document/9195819/ |
work_keys_str_mv |
AT sandipbhattacharya forcesensorbasedsurfacerecognitionwithsurfacepropertydependentwalkingspeedadjustmentofhumanoidrobot AT aiwenluo forcesensorbasedsurfacerecognitionwithsurfacepropertydependentwalkingspeedadjustmentofhumanoidrobot AT sunandandutta forcesensorbasedsurfacerecognitionwithsurfacepropertydependentwalkingspeedadjustmentofhumanoidrobot AT mitikomiuramattausch forcesensorbasedsurfacerecognitionwithsurfacepropertydependentwalkingspeedadjustmentofhumanoidrobot AT hansjurgenmattausch forcesensorbasedsurfacerecognitionwithsurfacepropertydependentwalkingspeedadjustmentofhumanoidrobot |
_version_ |
1724182649380012032 |