Real–Sim–Real Transfer for Real-World Robot Control Policy Learning with Deep Reinforcement Learning
Compared to traditional data-driven learning methods, recently developed deep reinforcement learning (DRL) approaches can be employed to train robot agents to obtain control policies with appealing performance. However, learning control policies for real-world robots through DRL is costly and cumber...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/5/1555 |