A Novel Tri-Training Technique for Semi-Supervised Classification of Hyperspectral Images Based on Diversity Measurement
This paper introduces a novel semi-supervised tri-training classification algorithm based on diversity measurement for hyperspectral imagery. In this algorithm, three measures of diversity, i.e., double-fault measure, disagreement metric and correlation coefficient, are applied to select the optimal...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-09-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-4292/8/9/749 |