Influence of Hsp90 and HDAC Inhibition and Tubulin Acetylation on Perinuclear Protein Aggregation in Human Retinal Pigment Epithelial Cells

Retinal pigment epithelial (RPE) cells are continually exposed to oxidative stress that contributes to protein misfolding, aggregation and functional abnormalities during aging. The protein aggregates formed at the cell periphery are delivered along the microtubulus network by dynein-dependent retro...

Full description

Bibliographic Details
Main Authors: Tuomas Ryhänen, Johanna Viiri, Juha M. T. Hyttinen, Hannu Uusitalo, Antero Salminen, Kai Kaarniranta
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:Journal of Biomedicine and Biotechnology
Online Access:http://dx.doi.org/10.1155/2011/798052
Description
Summary:Retinal pigment epithelial (RPE) cells are continually exposed to oxidative stress that contributes to protein misfolding, aggregation and functional abnormalities during aging. The protein aggregates formed at the cell periphery are delivered along the microtubulus network by dynein-dependent retrograde trafficking to a juxtanuclear location. We demonstrate that Hsp90 inhibition by geldanamycin can effectively suppress proteasome inhibitor, MG-132-induced protein aggregation in a way that is independent of HDAC inhibition or the tubulin acetylation levels in ARPE-19 cells. However, the tubulin acetylation and polymerization state affects the localization of the proteasome-inhibitor-induced aggregation. These findings open new perspectives for understanding the pathogenesis of protein aggregation in retinal cells and can be useful for the development of therapeutic treatments to prevent retinal cell deterioration.
ISSN:1110-7243
1110-7251