A Hybrid Short-Term Load Forecasting Model Based on Improved Fuzzy C-Means Clustering, Random Forest and Deep Neural Networks
Short-term load forecasting (STLF) plays an important role in the secure and reliable operation of the electric power system. Grouping similar load profiles by a clustering algorithm is a common method to reduce the uncertainty of electric consumption data. However, due to the uneven distribution of...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9366756/ |