Margin CosReid Network for Pedestrian Re-Identification
This paper proposes a margin CosReid network for effective pedestrian re-identification. Aiming to overcome the overfitting, gradient explosion, and loss function non-convergence problems caused by traditional CNNs, the proposed GBNeck model can realize a faster, stronger generalization, and more di...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/4/1775 |