Design, fabrication and characterization of a high-sensitivity pressure sensor based on nano-polysilicon thin film transistors

Based on the nano-polysilicon thin film transistors (TFTs), a high-sensitivity pressure sensor was designed and fabricated in this paper. The pressure sensing element is composed of a Wheatstone bridge with four nano-polysilicon TFTs designed on different positions of the square silicon diaphragm. V...

Full description

Bibliographic Details
Main Authors: Xiaofeng Zhao, Yang Yu, Dandan Li, Dianzhong Wen
Format: Article
Language:English
Published: AIP Publishing LLC 2015-12-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4938517
Description
Summary:Based on the nano-polysilicon thin film transistors (TFTs), a high-sensitivity pressure sensor was designed and fabricated in this paper. The pressure sensing element is composed of a Wheatstone bridge with four nano-polysilicon TFTs designed on different positions of the square silicon diaphragm. Via taking the four channel resistors of the TFTs as piezoresistors, the measurement to the external pressure can be realized according to the piezoresistive effects of channel layer. Through adopting complementary metal oxide semiconductor (CMOS) technology and micro-electromechanical system (MEMS) technology, the chips of sensor were fabricated on <100 > orientation silicon wafer with a high resistivity. At room temperature, when applying a voltage 5.0 V to the Wheatstone bridge, the full scale (100 kPa) output voltage and the sensitivity of the sensor with 35 μm-thick silicon diaphragm are 267 mV and 2.58 mV/kPa, respectively. The experimental results show that the pressure sensors can achieve a much higher sensitivity.
ISSN:2158-3226