Active Learning Through Multi-Standard Optimization
Active learning selects the most critical instances and obtains their labels through interaction with an oracle. Selecting either informative or representative unlabeled instances may result in sampling bias or cluster dependency. In this paper, we propose a multi-standard optimization active learni...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8703796/ |