Long-term drainage reduces CO<sub>2</sub> uptake and increases CO<sub>2</sub> emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics
With increasing air temperatures and changing precipitation patterns forecast for the Arctic over the coming decades, the thawing of ice-rich permafrost is expected to increasingly alter hydrological conditions by creating mosaics of wetter and drier areas. The objective of this study is to investig...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-07-01
|
Series: | Biogeosciences |
Online Access: | http://www.biogeosciences.net/13/4219/2016/bg-13-4219-2016.pdf |