PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo

Abstract Objective To study whether minimal doses of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and lipoxin A4 (LXA4) and brain-derived neurotrophic factor (BDNF), when used in combination can protect RIN5F cells from chemical-induced cytotoxicity. As a corolla...

Full description

Bibliographic Details
Main Authors: Siresha Bathina, Undurti N. Das
Format: Article
Language:English
Published: BMC 2019-12-01
Series:Lipids in Health and Disease
Subjects:
Online Access:https://doi.org/10.1186/s12944-019-1164-7
id doaj-8d54494d62f64cb4ad669ace86181772
record_format Article
spelling doaj-8d54494d62f64cb4ad669ace861817722020-12-13T12:40:23ZengBMCLipids in Health and Disease1476-511X2019-12-0118112510.1186/s12944-019-1164-7PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivoSiresha Bathina0Undurti N. Das1BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering CampusBioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering CampusAbstract Objective To study whether minimal doses of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and lipoxin A4 (LXA4) and brain-derived neurotrophic factor (BDNF), when used in combination can protect RIN5F cells from chemical-induced cytotoxicity. As a corollary, to know whether plasma BDNF and LXA4 are altered in STZ-induced type 2 DM animals. Materials and methods RIN5F cells, alloxan (AL), streptozotocin (STZ), doxorubicin (DB), and benzo(a)pyrene (BP) were used in this study. Chemical-induced apoptosis and changes in antioxidants, lipid peroxides and nitric oxide (NO) and LXA4 and BDNF levels in RIN5F cells were studied. Alterations in plasma concentrations of BDNF and LXA4 in STZ-induced type 2 diabetes animals was estimated. Results BDNF, LXA4 and AA, EPA and DHA protected (P < 0.001 and P < 0.01 respectively) against AL/STZ/DB/BP-induced toxicity to RIN5F cells in vitro. AL/ STZ/DB/BP inhibited BDNF and LXA4 production by RIN5F cells and were restored to normal by AA, EPA and DHA. Sub-optimal doses of BDNF, LXA4, AA and EPA when used in combination protected against cytotoxic action of AL/STZ/DB/BP on RIN5F cells in vitro by restoring LXA4/BDNF levels and altered antioxidant/lipid peroxides/NO levels (P < 0.01) to normal. STZ (65 mg/kg)-induced type 2 diabetes mellitus animals showed reduced plasma BDNF and LXA4 levels (P < 0.001). Discussion AL/STZ/DB/BP-induced cytotoxicity to RIN5F cells in vitro can be prevented by BDNF, LXA4 and AA. AL/STZ/DB/BP are cytotoxic, possibly, by suppressing the production of LXA4 and BDNF in RIN5F cells. STZ-induced type 2 DM animals have decreased plasma levels of LXA4 and BDNF. Conclusion The results of the present study suggest that BDNF, LXA4, EPA, DHA, AA, GLA and BDNF protect pancreatic β cells from the cytotoxic action of various chemicals and prevent development of diabetes mellitus. LXA4 seems to be the mediator of these cytoprotective actions of BDNF and PUFAs suggesting a close interaction exists among these molecules (BDNF, PUFAs and LXA4). Hence, methods developed to deliver a combination of PUFAs (especially AA), LXA4 and BDNF may prevent development of diabetes mellitus (both type 1 and type 2).https://doi.org/10.1186/s12944-019-1164-7Brain derived neurotrophic factorPolyunsaturated fatty acidLipoxin A4RIN5F cellsInflammationAntioxidants
collection DOAJ
language English
format Article
sources DOAJ
author Siresha Bathina
Undurti N. Das
spellingShingle Siresha Bathina
Undurti N. Das
PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo
Lipids in Health and Disease
Brain derived neurotrophic factor
Polyunsaturated fatty acid
Lipoxin A4
RIN5F cells
Inflammation
Antioxidants
author_facet Siresha Bathina
Undurti N. Das
author_sort Siresha Bathina
title PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo
title_short PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo
title_full PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo
title_fullStr PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo
title_full_unstemmed PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo
title_sort pufas, bdnf and lipoxin a4 inhibit chemical-induced cytotoxicity of rin5f cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo
publisher BMC
series Lipids in Health and Disease
issn 1476-511X
publishDate 2019-12-01
description Abstract Objective To study whether minimal doses of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and lipoxin A4 (LXA4) and brain-derived neurotrophic factor (BDNF), when used in combination can protect RIN5F cells from chemical-induced cytotoxicity. As a corollary, to know whether plasma BDNF and LXA4 are altered in STZ-induced type 2 DM animals. Materials and methods RIN5F cells, alloxan (AL), streptozotocin (STZ), doxorubicin (DB), and benzo(a)pyrene (BP) were used in this study. Chemical-induced apoptosis and changes in antioxidants, lipid peroxides and nitric oxide (NO) and LXA4 and BDNF levels in RIN5F cells were studied. Alterations in plasma concentrations of BDNF and LXA4 in STZ-induced type 2 diabetes animals was estimated. Results BDNF, LXA4 and AA, EPA and DHA protected (P < 0.001 and P < 0.01 respectively) against AL/STZ/DB/BP-induced toxicity to RIN5F cells in vitro. AL/ STZ/DB/BP inhibited BDNF and LXA4 production by RIN5F cells and were restored to normal by AA, EPA and DHA. Sub-optimal doses of BDNF, LXA4, AA and EPA when used in combination protected against cytotoxic action of AL/STZ/DB/BP on RIN5F cells in vitro by restoring LXA4/BDNF levels and altered antioxidant/lipid peroxides/NO levels (P < 0.01) to normal. STZ (65 mg/kg)-induced type 2 diabetes mellitus animals showed reduced plasma BDNF and LXA4 levels (P < 0.001). Discussion AL/STZ/DB/BP-induced cytotoxicity to RIN5F cells in vitro can be prevented by BDNF, LXA4 and AA. AL/STZ/DB/BP are cytotoxic, possibly, by suppressing the production of LXA4 and BDNF in RIN5F cells. STZ-induced type 2 DM animals have decreased plasma levels of LXA4 and BDNF. Conclusion The results of the present study suggest that BDNF, LXA4, EPA, DHA, AA, GLA and BDNF protect pancreatic β cells from the cytotoxic action of various chemicals and prevent development of diabetes mellitus. LXA4 seems to be the mediator of these cytoprotective actions of BDNF and PUFAs suggesting a close interaction exists among these molecules (BDNF, PUFAs and LXA4). Hence, methods developed to deliver a combination of PUFAs (especially AA), LXA4 and BDNF may prevent development of diabetes mellitus (both type 1 and type 2).
topic Brain derived neurotrophic factor
Polyunsaturated fatty acid
Lipoxin A4
RIN5F cells
Inflammation
Antioxidants
url https://doi.org/10.1186/s12944-019-1164-7
work_keys_str_mv AT sireshabathina pufasbdnfandlipoxina4inhibitchemicalinducedcytotoxicityofrin5fcellsinvitroandstreptozotocininducedtype2diabetesmellitusinvivo
AT undurtindas pufasbdnfandlipoxina4inhibitchemicalinducedcytotoxicityofrin5fcellsinvitroandstreptozotocininducedtype2diabetesmellitusinvivo
_version_ 1724384428497567744