Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras
Let ℰ(H) be the Hilbert space effect algebra on a Hilbert space H with dimH≥3, α,β two positive numbers with 2α+β≠1 and Φ:ℰ(H)→ℰ(H) a bijective map. We show that if Φ(AαBβAα)=Φ(A)αΦ(B)βΦ(A)α holds for all A,B∈ℰ(H), then there exists a unitary or an antiunitary operator U on H such that Φ(A)=UAU* fo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2014/216713 |
id |
doaj-8979f1464de246f097176bc7f68eeb22 |
---|---|
record_format |
Article |
spelling |
doaj-8979f1464de246f097176bc7f68eeb222021-07-02T02:29:24ZengHindawi LimitedAdvances in Mathematical Physics1687-91201687-91392014-01-01201410.1155/2014/216713216713Generalized Jordan Semitriple Maps on Hilbert Space Effect AlgebrasQing Yuan0Kan He1College of Mathematics, Institute of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, ChinaCollege of Mathematics, Institute of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, ChinaLet ℰ(H) be the Hilbert space effect algebra on a Hilbert space H with dimH≥3, α,β two positive numbers with 2α+β≠1 and Φ:ℰ(H)→ℰ(H) a bijective map. We show that if Φ(AαBβAα)=Φ(A)αΦ(B)βΦ(A)α holds for all A,B∈ℰ(H), then there exists a unitary or an antiunitary operator U on H such that Φ(A)=UAU* for every A∈ℰ(H).http://dx.doi.org/10.1155/2014/216713 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Qing Yuan Kan He |
spellingShingle |
Qing Yuan Kan He Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras Advances in Mathematical Physics |
author_facet |
Qing Yuan Kan He |
author_sort |
Qing Yuan |
title |
Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras |
title_short |
Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras |
title_full |
Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras |
title_fullStr |
Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras |
title_full_unstemmed |
Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras |
title_sort |
generalized jordan semitriple maps on hilbert space effect algebras |
publisher |
Hindawi Limited |
series |
Advances in Mathematical Physics |
issn |
1687-9120 1687-9139 |
publishDate |
2014-01-01 |
description |
Let ℰ(H) be the Hilbert space effect algebra on a Hilbert space H with dimH≥3, α,β two positive numbers with 2α+β≠1 and Φ:ℰ(H)→ℰ(H) a bijective map. We show that if Φ(AαBβAα)=Φ(A)αΦ(B)βΦ(A)α holds for all A,B∈ℰ(H), then there exists a unitary or an antiunitary operator U on H such that Φ(A)=UAU* for every A∈ℰ(H). |
url |
http://dx.doi.org/10.1155/2014/216713 |
work_keys_str_mv |
AT qingyuan generalizedjordansemitriplemapsonhilbertspaceeffectalgebras AT kanhe generalizedjordansemitriplemapsonhilbertspaceeffectalgebras |
_version_ |
1721343270641991680 |