Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras
Let ℰ(H) be the Hilbert space effect algebra on a Hilbert space H with dimH≥3, α,β two positive numbers with 2α+β≠1 and Φ:ℰ(H)→ℰ(H) a bijective map. We show that if Φ(AαBβAα)=Φ(A)αΦ(B)βΦ(A)α holds for all A,B∈ℰ(H), then there exists a unitary or an antiunitary operator U on H such that Φ(A)=UAU* fo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2014/216713 |