Generalized Jordan Semitriple Maps on Hilbert Space Effect Algebras

Let ℰ(H) be the Hilbert space effect algebra on a Hilbert space H with dim⁡H≥3, α,β two positive numbers with 2α+β≠1 and Φ:ℰ(H)→ℰ(H) a bijective map. We show that if Φ(AαBβAα)=Φ(A)αΦ(B)βΦ(A)α holds for all A,B∈ℰ(H), then there exists a unitary or an antiunitary operator U on H such that Φ(A)=UAU* fo...

Full description

Bibliographic Details
Main Authors: Qing Yuan, Kan He
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2014/216713