Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study
In mouse models of Alzheimer's disease (AD), normobaric intermittent hypoxia training (IHT) can preserve neurobehavioral function when applied before deficits develop, but IHT's effectiveness after onset of amyloid-β (Aβ) accumulation is unclear. This study tested the hypothesis that IHT i...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-07-01
|
Series: | Frontiers in Aging Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fnagi.2021.674688/full |
id |
doaj-88b5c8ca0f5e4874bf1cdadc4d9da88f |
---|---|
record_format |
Article |
spelling |
doaj-88b5c8ca0f5e4874bf1cdadc4d9da88f2021-07-01T15:31:03ZengFrontiers Media S.A.Frontiers in Aging Neuroscience1663-43652021-07-011310.3389/fnagi.2021.674688674688Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot StudyMyoung-Gwi Ryou0Xiaoan Chen1Xiaoan Chen2Ming Cai3Ming Cai4Hong Wang5Hong Wang6Marianna E. Jung7Daniel B. Metzger8Robert T. Mallet9Xiangrong Shi10Department of Medical Laboratory Science and Public Health, Tarleton State University, Texas A&M University System, Stephenville, TX, United StatesDepartment of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United StatesCollege of Sports Science, Jishou University, Jishou, ChinaDepartment of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United StatesCollege of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, ChinaDepartment of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United StatesCollege of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, ChinaDepartment of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United StatesDepartment of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United StatesDepartment of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United StatesDepartment of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United StatesIn mouse models of Alzheimer's disease (AD), normobaric intermittent hypoxia training (IHT) can preserve neurobehavioral function when applied before deficits develop, but IHT's effectiveness after onset of amyloid-β (Aβ) accumulation is unclear. This study tested the hypothesis that IHT improves learning-memory behavior, diminishes Aβ accumulation in cerebral cortex and hippocampus, and enhances cerebrocortical contents of the neuroprotective trophic factors erythropoietin and brain-derived neurotrophic factor (BDNF) in mice manifesting AD traits. Twelve-month-old female 3xTg-AD mice were assigned to untreated 3xTg-AD (n = 6), AD+IHT (n = 6), and AD+sham-IHT (n = 6) groups; 8 untreated wild-type (WT) mice also were studied. AD+IHT mice alternately breathed 10% O2 for 6 min and room air for 4 min, 10 cycles/day for 21 days; AD+sham-IHT mice breathed room air. Spatial learning-memory was assessed by Morris water maze. Cerebrocortical and hippocampal Aβ40 and Aβ42 contents were determined by ELISA, and cerebrocortical erythropoietin and BDNF were analyzed by immunoblotting and ELISA. The significance of time (12 vs. 12 months + 21 days) and treatment (IHT vs. sham-IHT) was evaluated by two-factor ANOVA. The change in swimming distance to find the water maze platform after 21 d IHT (−1.6 ± 1.8 m) differed from that after sham-IHT (+5.8 ± 2.6 m). Cerebrocortical and hippocampal Aβ42 contents were greater in 3xTg-AD than WT mice, but neither time nor treatment significantly affected Aβ40 or Aβ42 contents in the 3xTg-AD mice. Cerebrocortical erythropoietin and BDNF contents increased appreciably after IHT as compared to untreated 3xTg-AD and AD+sham-IHT mice. In conclusion, moderate, normobaric IHT prevented spatial learning-memory decline and restored cerebrocortical erythropoietin and BDNF contents despite ongoing Aβ accumulation in 3xTg-AD mice.https://www.frontiersin.org/articles/10.3389/fnagi.2021.674688/fullAlzheimer's diseasebeta-amyloidBDNFcerebral cortexerythropoietinintermittent hypoxia |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Myoung-Gwi Ryou Xiaoan Chen Xiaoan Chen Ming Cai Ming Cai Hong Wang Hong Wang Marianna E. Jung Daniel B. Metzger Robert T. Mallet Xiangrong Shi |
spellingShingle |
Myoung-Gwi Ryou Xiaoan Chen Xiaoan Chen Ming Cai Ming Cai Hong Wang Hong Wang Marianna E. Jung Daniel B. Metzger Robert T. Mallet Xiangrong Shi Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study Frontiers in Aging Neuroscience Alzheimer's disease beta-amyloid BDNF cerebral cortex erythropoietin intermittent hypoxia |
author_facet |
Myoung-Gwi Ryou Xiaoan Chen Xiaoan Chen Ming Cai Ming Cai Hong Wang Hong Wang Marianna E. Jung Daniel B. Metzger Robert T. Mallet Xiangrong Shi |
author_sort |
Myoung-Gwi Ryou |
title |
Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study |
title_short |
Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study |
title_full |
Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study |
title_fullStr |
Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study |
title_full_unstemmed |
Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study |
title_sort |
intermittent hypoxia training prevents deficient learning-memory behavior in mice modeling alzheimer's disease: a pilot study |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Aging Neuroscience |
issn |
1663-4365 |
publishDate |
2021-07-01 |
description |
In mouse models of Alzheimer's disease (AD), normobaric intermittent hypoxia training (IHT) can preserve neurobehavioral function when applied before deficits develop, but IHT's effectiveness after onset of amyloid-β (Aβ) accumulation is unclear. This study tested the hypothesis that IHT improves learning-memory behavior, diminishes Aβ accumulation in cerebral cortex and hippocampus, and enhances cerebrocortical contents of the neuroprotective trophic factors erythropoietin and brain-derived neurotrophic factor (BDNF) in mice manifesting AD traits. Twelve-month-old female 3xTg-AD mice were assigned to untreated 3xTg-AD (n = 6), AD+IHT (n = 6), and AD+sham-IHT (n = 6) groups; 8 untreated wild-type (WT) mice also were studied. AD+IHT mice alternately breathed 10% O2 for 6 min and room air for 4 min, 10 cycles/day for 21 days; AD+sham-IHT mice breathed room air. Spatial learning-memory was assessed by Morris water maze. Cerebrocortical and hippocampal Aβ40 and Aβ42 contents were determined by ELISA, and cerebrocortical erythropoietin and BDNF were analyzed by immunoblotting and ELISA. The significance of time (12 vs. 12 months + 21 days) and treatment (IHT vs. sham-IHT) was evaluated by two-factor ANOVA. The change in swimming distance to find the water maze platform after 21 d IHT (−1.6 ± 1.8 m) differed from that after sham-IHT (+5.8 ± 2.6 m). Cerebrocortical and hippocampal Aβ42 contents were greater in 3xTg-AD than WT mice, but neither time nor treatment significantly affected Aβ40 or Aβ42 contents in the 3xTg-AD mice. Cerebrocortical erythropoietin and BDNF contents increased appreciably after IHT as compared to untreated 3xTg-AD and AD+sham-IHT mice. In conclusion, moderate, normobaric IHT prevented spatial learning-memory decline and restored cerebrocortical erythropoietin and BDNF contents despite ongoing Aβ accumulation in 3xTg-AD mice. |
topic |
Alzheimer's disease beta-amyloid BDNF cerebral cortex erythropoietin intermittent hypoxia |
url |
https://www.frontiersin.org/articles/10.3389/fnagi.2021.674688/full |
work_keys_str_mv |
AT myounggwiryou intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT xiaoanchen intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT xiaoanchen intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT mingcai intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT mingcai intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT hongwang intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT hongwang intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT mariannaejung intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT danielbmetzger intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT roberttmallet intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy AT xiangrongshi intermittenthypoxiatrainingpreventsdeficientlearningmemorybehaviorinmicemodelingalzheimersdiseaseapilotstudy |
_version_ |
1721346844779347968 |