Global well-posedness for KdV in Sobolev spaces of negative index

The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in $H^s(mathbb{R})$ for $-3/10<s$.

Bibliographic Details
Main Authors: James Colliander, M. Keel, Gigliola Staffilani, Hideo Takaoka, T. Tao
Format: Article
Language:English
Published: Texas State University 2001-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2001/26/abstr.html