Likelihood-based approach to discriminate mixtures of network models that vary in time
Abstract Discriminating between competing explanatory models as to which is more likely responsible for the growth of a network is a problem of fundamental importance for network science. The rules governing this growth are attributed to mechanisms such as preferential attachment and triangle closur...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-03-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-84085-0 |