CLASSIFICADOR ADAPTATIVO PARA DADOS IMAGEM EM ALTA DIMENSIONALIDADE COM UM CONJUNTO PEQUENO DE AMOSTRAS DE TREINAMENTO
Neste trabalho é testado um classificador adaptativo que visa suavizar os efeitos causados por um número insuficiente de amostras de treinamento, fato este que pode degradar severamente a acurácia dos resultados obtidos por um classificador paramétrico utilizando dados com dimensão alta. O classific...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade Federal de Uberlândia
2009-11-01
|
Series: | Revista Brasileira de Cartografia |
Subjects: | |
Online Access: | http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/43542 |
Summary: | Neste trabalho é testado um classificador adaptativo que visa suavizar os efeitos causados por um número insuficiente de amostras de treinamento, fato este que pode degradar severamente a acurácia dos resultados obtidos por um classificador paramétrico utilizando dados com dimensão alta. O classificador adaptativo adiciona amostras semi-rotuladas ao conjunto das amostras de treinamento com o objetivo de reduzir os efeitos causados pelo pequeno número de amostras. O efeito das amostras semi-rotuladas é controlado por meio de um peso menor do que o peso atribuído as amostras originais. Os experimentos desenvolvidos mostram que este procedimento é eficiente na redução dos efeitos do fenômeno de Hughes contribuindo para aumentar a acurácia da imagem temática produzida. |
---|---|
ISSN: | 0560-4613 1808-0936 |