Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity.
Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-05-01
|
Series: | PLoS Computational Biology |
Online Access: | http://europepmc.org/articles/PMC4425518?pdf=render |