Why-Diff: Exploiting Provenance to Understand Outcome Differences From Non-Identical Reproduced Workflows
Data analytics processes such as scientific workflows tend to be executed repeatedly, with varying dependencies and input datasets. The case has been made in the past for tracking the provenance of the final information products through the workflow steps, to enable their reproducibility. In this pa...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8662612/ |