The new investigation of the stability of mixed type additive-quartic functional equations in non-Archimedean spaces
In this article, we prove the generalized Hyers-Ulam stability for the following additive-quartic functional equation:f(x+3y)+f(x−3y)+f(x+2y)+f(x−2y)+22f(x)+24f(y)=13[f(x+y)+f(x−y)]+12f(2y),f(x+3y)+f(x-3y)+f(x+2y)+f(x-2y)+22f(x)+24f(y)=13{[}f(x+y)+f(x-y)]+12f(2y),where f maps from an additive group...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-07-01
|
Series: | Demonstratio Mathematica |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/dema.2020.53.issue-1/dema-2020-0009/dema-2020-0009.xml?format=INT |