Melt-Spun Fibers from Bio-Based Polyester–Fiber Structure Development in High-Speed Melt Spinning of Poly(Ethylene 2,5-Furan Dicarboxylate) (PEF)

Poly(ethylene 2,5-furan dicarboxylate) (PEF) is regarded as a bio-based alternative or complementary polyester for the widely used fossil resource-based polyester, poly(ethylene terephthalate) (PET). High-speed melt spinning of PEF of low and high molecular weight (L-PEF, H-PEF) was conducted, and t...

Full description

Bibliographic Details
Main Authors: Wataru Takarada, Kenichi Sugimoto, Hajime Nakajima, Hendrikus A. Visser, Gert-Jan M. Gruter, Takeshi Kikutani
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/5/1172
Description
Summary:Poly(ethylene 2,5-furan dicarboxylate) (PEF) is regarded as a bio-based alternative or complementary polyester for the widely used fossil resource-based polyester, poly(ethylene terephthalate) (PET). High-speed melt spinning of PEF of low and high molecular weight (L-PEF, H-PEF) was conducted, and the structure and properties of the resultant as-spun fibers were investigated. The occurrence of orientation-induced crystallization was confirmed for the H-PEF at the take-up velocity of 6.0 km/min, the highest speed for producing PET fibers in the industry. Molecular orientation and crystallinity of the as-spun fibers increased with the increase of take-up velocity, where the H-PEF fibers always showed a higher degree of structural development than the L-PEF fibers. The tensile modulus of the high-speed spun H-PEF fibers was relatively low at 5 GPa, whereas a sufficiently high tensile strength of approximately 500 MPa was measured. These values are adequately high for the application in the general semi-engineering fiber field.
ISSN:1996-1944