The generalized inverse eigenvalue problem of Hamiltonian matrices and its approximation

Let $ J = \left[ \begin{array}{cc} 0 & I_n \\ -I_n & 0 \\ \end{array} \right] \in \mathbb{R}^{2n\times 2n} $. A matrix $ A \in \mathbb{R}^{2n\times 2n} $ is said to be Hamiltonian if $ (AJ)^{\top} = AJ $. In this paper, we first consider the following generalized inverse eigenvalue...

Full description

Bibliographic Details
Main Authors: Lina Liu, Huiting Zhang, Yinlan Chen
Format: Article
Language:English
Published: AIMS Press 2021-07-01
Series:AIMS Mathematics
Subjects:
Online Access:https://aimspress.com/article/doi/10.3934/math.2021574?viewType=HTML