Labeling Confidence Values for Wafer-Handling Robot Arm Performance Using a Feature-Based General Regression Neural Network and Genetic Algorithm

The prognosis and management of machine health statuses are emerging research topics. In this study, the performance degradation of a wafer-handling robot arm (WHRA) was predicted using the proposed machine-learning approach. This method considers the eccentric vertical and planar position deviation...

Full description

Bibliographic Details
Main Authors: Yi-Cheng Huang, Zi-Sheng Yang, Hsien-Shu Liao
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/20/4241
Description
Summary:The prognosis and management of machine health statuses are emerging research topics. In this study, the performance degradation of a wafer-handling robot arm (WHRA) was predicted using the proposed machine-learning approach. This method considers the eccentric vertical and planar position deviations from a wafer mark using a charge-coupled device (CCD) camera. Synthesized position signals were defined using the square root of <i>x</i>- and <i>y</i>-axes deviations in the horizontal view and the square of the wafer mark diameter in the vertical view. A feature extraction method was used to determine the position status on the basis of these displacements and the area of a wafer mark in a CCD image. The root mean square error and mean, maximum, and minimum of the synthesized position signals were extracted through feature extraction and used for data mining by a general regression neural network (GRNN) and logistic regression (LR) models. The lifetime assessment by confidence value of the WHRA&#8217;s remaining useful life (RUL) by the genetic algorithm/GRNN exhibited nearly the same trend as that predicted through a run-to-failure LR model. The experimental results indicated that the proposed methodology can be used for proactive assessments of the RUL of WHRAs.
ISSN:2076-3417