Teaching solid mechanics to artificial intelligence—a fast solver for heterogeneous materials
Abstract We propose a deep neural network (DNN) as a fast surrogate model for local stress calculations in inhomogeneous non-linear materials. We show that the DNN predicts the local stresses with 3.8% mean absolute percentage error (MAPE) for the case of heterogeneous elastic media and a mechanical...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-07-01
|
Series: | npj Computational Materials |
Online Access: | https://doi.org/10.1038/s41524-021-00571-z |