Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments

The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enab...

Full description

Bibliographic Details
Main Authors: Matthew D. Shoulders, Lisa M. Ryno, Joseph C. Genereux, James J. Moresco, Patricia G. Tu, Chunlei Wu, John R. Yates, III, Andrew I. Su, Jeffery W. Kelly, R. Luke Wiseman
Format: Article
Language:English
Published: Elsevier 2013-04-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124713001319
id doaj-7fe6e7d4d578476c93671cd01d2aea31
record_format Article
spelling doaj-7fe6e7d4d578476c93671cd01d2aea312020-11-24T22:24:00ZengElsevierCell Reports2211-12472013-04-01341279129210.1016/j.celrep.2013.03.024Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis EnvironmentsMatthew D. Shoulders0Lisa M. Ryno1Joseph C. Genereux2James J. Moresco3Patricia G. Tu4Chunlei Wu5John R. Yates, III6Andrew I. Su7Jeffery W. Kelly8R. Luke Wiseman9Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USADepartment of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small-molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selective restoration of aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR activation. http://www.sciencedirect.com/science/article/pii/S2211124713001319
collection DOAJ
language English
format Article
sources DOAJ
author Matthew D. Shoulders
Lisa M. Ryno
Joseph C. Genereux
James J. Moresco
Patricia G. Tu
Chunlei Wu
John R. Yates, III
Andrew I. Su
Jeffery W. Kelly
R. Luke Wiseman
spellingShingle Matthew D. Shoulders
Lisa M. Ryno
Joseph C. Genereux
James J. Moresco
Patricia G. Tu
Chunlei Wu
John R. Yates, III
Andrew I. Su
Jeffery W. Kelly
R. Luke Wiseman
Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments
Cell Reports
author_facet Matthew D. Shoulders
Lisa M. Ryno
Joseph C. Genereux
James J. Moresco
Patricia G. Tu
Chunlei Wu
John R. Yates, III
Andrew I. Su
Jeffery W. Kelly
R. Luke Wiseman
author_sort Matthew D. Shoulders
title Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments
title_short Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments
title_full Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments
title_fullStr Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments
title_full_unstemmed Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments
title_sort stress-independent activation of xbp1s and/or atf6 reveals three functionally diverse er proteostasis environments
publisher Elsevier
series Cell Reports
issn 2211-1247
publishDate 2013-04-01
description The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small-molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selective restoration of aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR activation.
url http://www.sciencedirect.com/science/article/pii/S2211124713001319
work_keys_str_mv AT matthewdshoulders stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT lisamryno stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT josephcgenereux stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT jamesjmoresco stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT patriciagtu stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT chunleiwu stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT johnryatesiii stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT andrewisu stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT jefferywkelly stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
AT rlukewiseman stressindependentactivationofxbp1sandoratf6revealsthreefunctionallydiverseerproteostasisenvironments
_version_ 1725762853820956672