Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen
Dendritic cells (DCs) are important initiators of adaptive immunity, and they possess a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell mediated immunity against invading pathogens. PRR ligands are frequently conjugated to tumor-associated antigens in a vaccination st...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-10-01
|
Series: | Frontiers in Chemistry |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fchem.2019.00650/full |
id |
doaj-7fddd65bb74d4e4eab8466df32613fe6 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rui-Jun Eveline Li Tim P. Hogervorst Silvia Achilli Sven C. Bruijns Tim Arnoldus Corinne Vivès Chung C. Wong Michel Thépaut Nico J. Meeuwenoord Hans van den Elst Herman S. Overkleeft Gijs A. van der Marel Dmitri V. Filippov Sandra J. van Vliet Franck Fieschi Jeroen D. C. Codée Yvette van Kooyk |
spellingShingle |
Rui-Jun Eveline Li Tim P. Hogervorst Silvia Achilli Sven C. Bruijns Tim Arnoldus Corinne Vivès Chung C. Wong Michel Thépaut Nico J. Meeuwenoord Hans van den Elst Herman S. Overkleeft Gijs A. van der Marel Dmitri V. Filippov Sandra J. van Vliet Franck Fieschi Jeroen D. C. Codée Yvette van Kooyk Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen Frontiers in Chemistry DC-SIGN TLR7 glyco-antigen vaccine model peptide conjugate tumor-associated antigens |
author_facet |
Rui-Jun Eveline Li Tim P. Hogervorst Silvia Achilli Sven C. Bruijns Tim Arnoldus Corinne Vivès Chung C. Wong Michel Thépaut Nico J. Meeuwenoord Hans van den Elst Herman S. Overkleeft Gijs A. van der Marel Dmitri V. Filippov Sandra J. van Vliet Franck Fieschi Jeroen D. C. Codée Yvette van Kooyk |
author_sort |
Rui-Jun Eveline Li |
title |
Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen |
title_short |
Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen |
title_full |
Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen |
title_fullStr |
Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen |
title_full_unstemmed |
Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen |
title_sort |
systematic dual targeting of dendritic cell c-type lectin receptor dc-sign and tlr7 using a trifunctional mannosylated antigen |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Chemistry |
issn |
2296-2646 |
publishDate |
2019-10-01 |
description |
Dendritic cells (DCs) are important initiators of adaptive immunity, and they possess a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell mediated immunity against invading pathogens. PRR ligands are frequently conjugated to tumor-associated antigens in a vaccination strategy to enhance the immune response toward such antigens. One of these PPRs, DC-SIGN, a member of the C-type lectin receptor (CLR) family, has been extensively targeted with Lewis structures and mannose glycans, often presented in multivalent fashion. We synthesized a library of well-defined mannosides (mono-, di-, and tri-mannosides), based on known “high mannose” structures, that we presented in a systematically increasing number of copies (n = 1, 2, 3, or 6), allowing us to simultaneously study the effect of mannoside configuration and multivalency on DC-SIGN binding via Surface Plasmon Resonance (SPR) and flow cytometry. Hexavalent presentation of the clusters showed the highest binding affinity, with the hexa-α1,2-di-mannoside being the most potent ligand. The four highest binding hexavalent mannoside structures were conjugated to a model melanoma gp100-peptide antigen and further equipped with a Toll-like receptor 7 (TLR7)-agonist as adjuvant for DC maturation, creating a trifunctional vaccine conjugate. Interestingly, DC-SIGN affinity of the mannoside clusters did not directly correlate with antigen presentation enhancing properties and the α1,2-di-mannoside cluster with the highest binding affinity in our library even hampered T cell activation. Overall, this systematic study has demonstrated that multivalent glycan presentation can improve DC-SIGN binding but enhanced binding cannot be directly translated into enhanced antigen presentation and the sole assessment of binding affinity is thus insufficient to determine further functional biological activity. Furthermore, we show that well-defined antigen conjugates combining two different PRR ligands can be generated in a modular fashion to increase the effectiveness of vaccine constructs. |
topic |
DC-SIGN TLR7 glyco-antigen vaccine model peptide conjugate tumor-associated antigens |
url |
https://www.frontiersin.org/article/10.3389/fchem.2019.00650/full |
work_keys_str_mv |
AT ruijunevelineli systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT timphogervorst systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT silviaachilli systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT svencbruijns systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT timarnoldus systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT corinnevives systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT chungcwong systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT michelthepaut systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT nicojmeeuwenoord systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT hansvandenelst systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT hermansoverkleeft systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT gijsavandermarel systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT dmitrivfilippov systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT sandrajvanvliet systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT franckfieschi systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT jeroendccodee systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen AT yvettevankooyk systematicdualtargetingofdendriticcellctypelectinreceptordcsignandtlr7usingatrifunctionalmannosylatedantigen |
_version_ |
1725145491196346368 |
spelling |
doaj-7fddd65bb74d4e4eab8466df32613fe62020-11-25T01:17:50ZengFrontiers Media S.A.Frontiers in Chemistry2296-26462019-10-01710.3389/fchem.2019.00650479517Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated AntigenRui-Jun Eveline Li0Tim P. Hogervorst1Silvia Achilli2Sven C. Bruijns3Tim Arnoldus4Corinne Vivès5Chung C. Wong6Michel Thépaut7Nico J. Meeuwenoord8Hans van den Elst9Herman S. Overkleeft10Gijs A. van der Marel11Dmitri V. Filippov12Sandra J. van Vliet13Franck Fieschi14Jeroen D. C. Codée15Yvette van Kooyk16Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, NetherlandsDepartment of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, NetherlandsUniv. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, FranceDepartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, NetherlandsDepartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, NetherlandsUniv. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, FranceDepartment of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, NetherlandsUniv. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, FranceDepartment of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, NetherlandsDepartment of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, NetherlandsDepartment of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, NetherlandsDepartment of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, NetherlandsDepartment of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, NetherlandsDepartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, NetherlandsUniv. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, FranceDepartment of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, NetherlandsDepartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, NetherlandsDendritic cells (DCs) are important initiators of adaptive immunity, and they possess a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell mediated immunity against invading pathogens. PRR ligands are frequently conjugated to tumor-associated antigens in a vaccination strategy to enhance the immune response toward such antigens. One of these PPRs, DC-SIGN, a member of the C-type lectin receptor (CLR) family, has been extensively targeted with Lewis structures and mannose glycans, often presented in multivalent fashion. We synthesized a library of well-defined mannosides (mono-, di-, and tri-mannosides), based on known “high mannose” structures, that we presented in a systematically increasing number of copies (n = 1, 2, 3, or 6), allowing us to simultaneously study the effect of mannoside configuration and multivalency on DC-SIGN binding via Surface Plasmon Resonance (SPR) and flow cytometry. Hexavalent presentation of the clusters showed the highest binding affinity, with the hexa-α1,2-di-mannoside being the most potent ligand. The four highest binding hexavalent mannoside structures were conjugated to a model melanoma gp100-peptide antigen and further equipped with a Toll-like receptor 7 (TLR7)-agonist as adjuvant for DC maturation, creating a trifunctional vaccine conjugate. Interestingly, DC-SIGN affinity of the mannoside clusters did not directly correlate with antigen presentation enhancing properties and the α1,2-di-mannoside cluster with the highest binding affinity in our library even hampered T cell activation. Overall, this systematic study has demonstrated that multivalent glycan presentation can improve DC-SIGN binding but enhanced binding cannot be directly translated into enhanced antigen presentation and the sole assessment of binding affinity is thus insufficient to determine further functional biological activity. Furthermore, we show that well-defined antigen conjugates combining two different PRR ligands can be generated in a modular fashion to increase the effectiveness of vaccine constructs.https://www.frontiersin.org/article/10.3389/fchem.2019.00650/fullDC-SIGNTLR7glyco-antigenvaccine modelpeptide conjugatetumor-associated antigens |