Nonlinear eigenvalue problems in Sobolev spaces with variable exponent

We study the boundary value problem -div⁡((|∇u|p1(x)-2+|∇u|p2(x)-2)∇u)=f(x,u) in Ω, u=0 on ∂Ω, where Ω is a smooth bounded domain in ℝN. We focus on the cases when f±(x,  u)=±(-λ|u|m(x)-2u+|u|q(x)-2u), where m(x)≔max⁡⁡{p1(x),p2(x)}<q(x)<N⋅m(x)N-m(x) for any x∈Ω̅. In the first case we show th...

Full description

Bibliographic Details
Main Author: Teodora-Liliana Dinu
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2006/515496