Triangles in Ks-saturated graphs with minimum degree t

For $n \geq 15$, we prove that the minimum number of triangles in an $n$-vertex $K_4$-saturated graph with minimum degree 4 is exactly $2n-4$, and that there is a unique extremal graph. This is a triangle version of a result of Alon, Erd\H{o}s, Holzman, and Krivelevich from 1996. Additionally, we sh...

Full description

Bibliographic Details
Main Authors: Craig Timmons, Benjamin Cole, Albert Curry, David Davini
Format: Article
Language:English
Published: Georgia Southern University 2020-03-01
Series:Theory and Applications of Graphs
Subjects:
Online Access:https://digitalcommons.georgiasouthern.edu/tag/vol7/iss1/2