Detection and classification of turn fault and high-resistance connection fault in inverter-fed permanent magnet machines based on high-frequency signals

Winding turn fault and high-resistance connection (HRC) fault will lead to different consequences and require different mitigation actions. In this study, the differentiating features between a turn fault and HRC fault are analysed and compared in a three-phase surface-mounted permanent magnet machi...

Full description

Bibliographic Details
Main Authors: Rongguang Hu, Jiabin Wang, Andrew Mills, Ellis Chong, Zhigang Sun
Format: Article
Language:English
Published: Wiley 2019-05-01
Series:The Journal of Engineering
Subjects:
Online Access:https://digital-library.theiet.org/content/journals/10.1049/joe.2018.8253
Description
Summary:Winding turn fault and high-resistance connection (HRC) fault will lead to different consequences and require different mitigation actions. In this study, the differentiating features between a turn fault and HRC fault are analysed and compared in a three-phase surface-mounted permanent magnet machine fed by the inverter with pulse-width-modulation voltages. The resultant high-frequency components in both voltages and currents are utilised for the fault detection and classification based on the high-frequency impedance and ripple current, without requiring modifications to the machine or interface design. Extensive simulations show that this method is capable of fault detection and classification in both transient and steady-state operations.
ISSN:2051-3305