Identifying regulators for EAG1 channels with a novel electrophysiology and tryptophan fluorescence based screen.
Ether-à-go-go (EAG) channels are expressed throughout the central nervous system and are also crucial regulators of cell cycle and tumor progression. The large intracellular amino- and carboxy- terminal domains of EAG1 each share similarity with known ligand binding motifs in other proteins, yet EAG...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2010-09-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2932742?pdf=render |
Summary: | Ether-à-go-go (EAG) channels are expressed throughout the central nervous system and are also crucial regulators of cell cycle and tumor progression. The large intracellular amino- and carboxy- terminal domains of EAG1 each share similarity with known ligand binding motifs in other proteins, yet EAG1 channels have no known regulatory ligands.Here we screened a library of small biologically relevant molecules against EAG1 channels with a novel two-pronged screen to identify channel regulators. In one arm of the screen we used electrophysiology to assess the functional effects of the library compounds on full-length EAG1 channels. In an orthogonal arm, we used tryptophan fluorescence to screen for binding of the library compounds to the isolated C-terminal region.Several compounds from the flavonoid, indole and benzofuran chemical families emerged as binding partners and/or regulators of EAG1 channels. The two-prong screen can aid ligand and drug discovery for ligand-binding domains of other ion channels. |
---|---|
ISSN: | 1932-6203 |