Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice
Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either a...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016-12-01
|
Series: | Redox Biology |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213231716302129 |
id |
doaj-7a5e54e3f9764bec8045a6fb90d0ccf4 |
---|---|
record_format |
Article |
spelling |
doaj-7a5e54e3f9764bec8045a6fb90d0ccf42020-11-25T02:04:48ZengElsevierRedox Biology2213-23172016-12-0110C22123210.1016/j.redox.2016.10.009Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient miceRuixia Dong0Dongxu Wang1Xiaoxiao Wang2Ke Zhang3Pingping Chen4Chung S. Yang5Jinsong Zhang6State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, ChinaState Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, ChinaState Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, ChinaState Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, ChinaState Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, ChinaDepartment of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USAState Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, ChinaSelenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.http://www.sciencedirect.com/science/article/pii/S2213231716302129Epigallocatechin-3-gallateSeleniumThioredoxin systemGlutathione systemNrf2 response |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ruixia Dong Dongxu Wang Xiaoxiao Wang Ke Zhang Pingping Chen Chung S. Yang Jinsong Zhang |
spellingShingle |
Ruixia Dong Dongxu Wang Xiaoxiao Wang Ke Zhang Pingping Chen Chung S. Yang Jinsong Zhang Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice Redox Biology Epigallocatechin-3-gallate Selenium Thioredoxin system Glutathione system Nrf2 response |
author_facet |
Ruixia Dong Dongxu Wang Xiaoxiao Wang Ke Zhang Pingping Chen Chung S. Yang Jinsong Zhang |
author_sort |
Ruixia Dong |
title |
Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice |
title_short |
Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice |
title_full |
Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice |
title_fullStr |
Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice |
title_full_unstemmed |
Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice |
title_sort |
epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic nrf2 responses in selenium-deficient mice |
publisher |
Elsevier |
series |
Redox Biology |
issn |
2213-2317 |
publishDate |
2016-12-01 |
description |
Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system. |
topic |
Epigallocatechin-3-gallate Selenium Thioredoxin system Glutathione system Nrf2 response |
url |
http://www.sciencedirect.com/science/article/pii/S2213231716302129 |
work_keys_str_mv |
AT ruixiadong epigallocatechin3gallateenhanceskeyenzymaticactivitiesofhepaticthioredoxinandglutathionesystemsinseleniumoptimalmicebutactivateshepaticnrf2responsesinseleniumdeficientmice AT dongxuwang epigallocatechin3gallateenhanceskeyenzymaticactivitiesofhepaticthioredoxinandglutathionesystemsinseleniumoptimalmicebutactivateshepaticnrf2responsesinseleniumdeficientmice AT xiaoxiaowang epigallocatechin3gallateenhanceskeyenzymaticactivitiesofhepaticthioredoxinandglutathionesystemsinseleniumoptimalmicebutactivateshepaticnrf2responsesinseleniumdeficientmice AT kezhang epigallocatechin3gallateenhanceskeyenzymaticactivitiesofhepaticthioredoxinandglutathionesystemsinseleniumoptimalmicebutactivateshepaticnrf2responsesinseleniumdeficientmice AT pingpingchen epigallocatechin3gallateenhanceskeyenzymaticactivitiesofhepaticthioredoxinandglutathionesystemsinseleniumoptimalmicebutactivateshepaticnrf2responsesinseleniumdeficientmice AT chungsyang epigallocatechin3gallateenhanceskeyenzymaticactivitiesofhepaticthioredoxinandglutathionesystemsinseleniumoptimalmicebutactivateshepaticnrf2responsesinseleniumdeficientmice AT jinsongzhang epigallocatechin3gallateenhanceskeyenzymaticactivitiesofhepaticthioredoxinandglutathionesystemsinseleniumoptimalmicebutactivateshepaticnrf2responsesinseleniumdeficientmice |
_version_ |
1724940999002685440 |