A Deep-Reinforcement-Learning-Based Optimization Approach for Real-Time Scheduling in Cloud Manufacturing
Resource scheduling problems (RSPs) in cloud manufacturing (CMfg) often manifest as dynamic scheduling problems in which scheduling strategies depend on real-time environments and demands. Generally, multiple resources in the CMfg scheduling process cause difficulties in system modeling. To solve th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8952684/ |