Least energy sign-changing solutions for the fractional Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$

Abstract In this paper, we study the following nonlinear fractional Schrödinger–Poisson system 0.1 {(−Δ)su+V(x)u+ϕu=K(x)f(u),x∈R3,(−Δ)tϕ=u2,x∈R3. $$ \textstyle\begin{cases} (-\Delta )^{s}u+V(x)u+\phi u=K(x)f(u),&x\in \mathbb{R}^{3}, \\ (-\Delta )^{t} \phi =u^{2},&x\in {\mathbb{R}}^{3}. \end{...

Full description

Bibliographic Details
Main Authors: Da-Bin Wang, Yu-Mei Ma, Wen Guan
Format: Article
Language:English
Published: SpringerOpen 2019-01-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1128-x