Least energy sign-changing solutions for the fractional Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$
Abstract In this paper, we study the following nonlinear fractional Schrödinger–Poisson system 0.1 {(−Δ)su+V(x)u+ϕu=K(x)f(u),x∈R3,(−Δ)tϕ=u2,x∈R3. $$ \textstyle\begin{cases} (-\Delta )^{s}u+V(x)u+\phi u=K(x)f(u),&x\in \mathbb{R}^{3}, \\ (-\Delta )^{t} \phi =u^{2},&x\in {\mathbb{R}}^{3}. \end{...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-01-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-019-1128-x |