Local and global bifurcation of steady states to a general Brusselator model
Abstract In this paper, we consider the local and global bifurcation of nonnegative nonconstant solutions of a general Brusselator model {−d1△u=a−(b+1)f(u)+u2v,x∈Ω,−d2△v=bf(u)−u2v,x∈Ω,∂u∂n=∂v∂n=0,x∈∂Ω, $$ \textstyle\begin{cases} -d_{1}\triangle u=a-(b+1)f(u)+u^{2}v, & x\in \varOmega , \\ -d_{2}\...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-11-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13662-019-2426-4 |