Local and global bifurcation of steady states to a general Brusselator model

Abstract In this paper, we consider the local and global bifurcation of nonnegative nonconstant solutions of a general Brusselator model {−d1△u=a−(b+1)f(u)+u2v,x∈Ω,−d2△v=bf(u)−u2v,x∈Ω,∂u∂n=∂v∂n=0,x∈∂Ω, $$ \textstyle\begin{cases} -d_{1}\triangle u=a-(b+1)f(u)+u^{2}v, & x\in \varOmega , \\ -d_{2}\...

Full description

Bibliographic Details
Main Authors: Zhongzi Zhao, Ruyun Ma
Format: Article
Language:English
Published: SpringerOpen 2019-11-01
Series:Advances in Difference Equations
Subjects:
Online Access:https://doi.org/10.1186/s13662-019-2426-4