Smooth muscle-specific HuR knockout induces defective autophagy and atherosclerosis

Abstract Human antigen R (HuR) is a widespread RNA-binding protein involved in homeostatic regulation and pathological processes in many diseases. Atherosclerosis is the leading cause of cardiovascular disease and acute cardiovascular events. However, the role of HuR in atherosclerosis remains unkno...

Full description

Bibliographic Details
Main Authors: Shanshan Liu, Xiuxin Jiang, Xiuru Cui, Jingjing Wang, Shangming Liu, Hongxuan Li, Jianmin Yang, Cheng Zhang, Wencheng Zhang
Format: Article
Language:English
Published: Nature Publishing Group 2021-04-01
Series:Cell Death and Disease
Online Access:https://doi.org/10.1038/s41419-021-03671-2
Description
Summary:Abstract Human antigen R (HuR) is a widespread RNA-binding protein involved in homeostatic regulation and pathological processes in many diseases. Atherosclerosis is the leading cause of cardiovascular disease and acute cardiovascular events. However, the role of HuR in atherosclerosis remains unknown. In this study, mice with smooth muscle-specific HuR knockout (HuRSMKO) were generated to investigate the role of HuR in atherosclerosis. HuR expression was reduced in atherosclerotic plaques. As compared with controls, HuRSMKO mice showed increased plaque burden in the atherosclerotic model. Mechanically, HuR could bind to the mRNAs of adenosine 5′-monophosphate-activated protein kinase (AMPK) α1 and AMPKα2, thus increasing their stability and translation. HuR deficiency reduced p-AMPK and LC3II levels and increased p62 level, thereby resulting in defective autophagy. Finally, pharmacological AMPK activation induced autophagy and suppressed atherosclerosis in HuRSMKO mice. Our findings suggest that smooth muscle HuR has a protective effect against atherosclerosis by increasing AMPK-mediated autophagy.
ISSN:2041-4889