Distributed Robust Kalman Filtering with Unknown and Noisy Parameters in Sensor Networks
This paper investigates the distributed filtering for discrete-time-invariant systems in sensor networks where each sensor’s measuring system may not be observable, and each sensor can just obtain partial system parameters with unknown coefficients which are modeled by Gaussian white noises. A fully...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2018/7954263 |