The L(2,1)-choosability of cycle
For a given graph $G=(V,E)$, let $mathscr L(G)={L(v) : vin V}$ be a prescribed list assignment. $G$ is $mathscr L$-$L(2,1)$-colorable if there exists a vertex labeling $f$ of $G$ such that $f(v)in L(v)$ for all $v in V$; $|f(u)-f(v)|geq 2$ if $d_G(u,v) = 1$; and $|f(u)-f(v)|geq 1$ if $d_G(u,v)=2$. I...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2012-09-01
|
Series: | Transactions on Combinatorics |
Subjects: | |
Online Access: | http://www.combinatorics.ir/?_action=showPDF&article=1895&_ob=af9697c011ab75520a7ae549e786aa00&fileName=full_text.pdf |