Summary: | Reliability and controllability for a new scheme of gate-all-around field effect transistor (GAA-FET) with a silicon channel utilizing a sectorial cross section is evaluated in terms of Ion/Ioff current ratio, transconductance, subthreshold slope, threshold voltage roll-off, and drain induced barrier lowering (DIBL). In addition, the scaling behavior of electronic figures of merit is comprehensively studied with the aid of physical simulations. The electrical characteristic of proposed structure is compared with a circular GAA-FET, which is previously calibrated with an IBM sample at the 22 nm channel length using 3D-TCAD simulations. Our simulation results show that sectorial cross section GAA-FET is a superior structure for controlling short channel effects (SCEs) and to obtain better performance compared to conventional circular cross section counterpart.
|