Summary: | <p>Abstract</p> <p>Background</p> <p>Parkinson's disease (PD) involves the selective damage of dopaminergic neuron cells resulting from the accumulation and fibril formation of alpha-synuclein. Recently, it has been shown that not only full-length alpha-synuclein, but also C-terminal truncated forms exist in the normal brain, as well as Lewy bodies, which are cytoplasmic inclusions in PD. It is known that truncated alpha-synuclein has a much higher ability to aggregate and fibrillate than full-length alpha-synuclein. Since the fibrils and precursor oligomers of alpha-synuclein are cytotoxic to the neuron, inhibitors that prevent the formation of oligomers and/or fibrils might open the way to a novel therapeutic approach to PD. However, no inhibitor for truncated alpha-synuclein has been reported yet.</p> <p>Results</p> <p>In this study, we first characterized the aggregation and cytotoxicity of C-truncated alpha-synuclein119 and alpha-synuclein133 which have been found in both the normal and the pathogenic brain. Alpha-synuclein119 aggregated more rapidly and enhanced significantly the fibril formation of alpha-synuclein. Although both of alpha-synuclein119 and alpha-synuclein133 showed a high cytotoxicity, alpha-synuclein133 showed a similar aggregation with full-length alpha-synuclein and no acceleration effect. We showed that PQQ dramatically inhibits the fibril formation of C-terminal truncated alpha-synuclein110119, and 133 as well as the mixtures of full-length alpha-synuclein with these truncated variants. Moreover, PQQ decreases the cytotoxicity of truncated alpha-synuclein.</p> <p>Conclusions</p> <p>Our results demonstrate that PQQ inhibits the amyloid fibril formation and cytotoxicity of the C-truncated alpha-synuclein variants. We believe that PQQ is a strong candidate for a reagent compound in the treatment of PD.</p>
|