Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg

Studies of the hyperfine anomaly has found a renewed interest with the recent development of techniques to study the properties of long chains of unstable nuclei. By using the hyperfine structure for determining the nuclear magnetic dipole moments, the hyperfine anomaly puts a limit to the accuracy....

Full description

Bibliographic Details
Main Authors: Tarjei Heggset, Jonas R. Persson
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/8/4/86
id doaj-6ed0aee556004896b1ee0a9a8254bfe7
record_format Article
spelling doaj-6ed0aee556004896b1ee0a9a8254bfe72020-11-28T00:02:18ZengMDPI AGAtoms2218-20042020-11-018868610.3390/atoms8040086Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of HgTarjei Heggset0Jonas R. Persson1Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayDepartment of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayStudies of the hyperfine anomaly has found a renewed interest with the recent development of techniques to study the properties of long chains of unstable nuclei. By using the hyperfine structure for determining the nuclear magnetic dipole moments, the hyperfine anomaly puts a limit to the accuracy. In this paper, the differential Breit–Rosenthal effect is calculated for the <inline-formula><math display="inline"><semantics><mrow><mn>6</mn><mi>s</mi><mn>6</mn><mi>p</mi></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><msub><mi>P</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> states in <inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>199</mn></msup><mi>H</mi><mi>g</mi></mrow></semantics></math></inline-formula> as a function of the change in nuclear radii, using the MCDHF code, GRASP2018. The differential Breit–Rosenthal effect was found to be of the order of <inline-formula><math display="inline"><semantics><mrow><mn>0.1</mn><mo>%</mo><mi mathvariant="normal">f</mi><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, in most cases much less than the Bohr-Weisskopf effect. The results also indicate that large calculations might not be necessary, with the present accuracy of the experimental values for the hyperfine anomaly.https://www.mdpi.com/2218-2004/8/4/86hyperfine anomalybreit-rosenthal effectmercuryMCDHFnuclear charge radius
collection DOAJ
language English
format Article
sources DOAJ
author Tarjei Heggset
Jonas R. Persson
spellingShingle Tarjei Heggset
Jonas R. Persson
Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg
Atoms
hyperfine anomaly
breit-rosenthal effect
mercury
MCDHF
nuclear charge radius
author_facet Tarjei Heggset
Jonas R. Persson
author_sort Tarjei Heggset
title Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg
title_short Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg
title_full Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg
title_fullStr Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg
title_full_unstemmed Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg
title_sort calculation of the differential breit–rosenthal effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> states of hg
publisher MDPI AG
series Atoms
issn 2218-2004
publishDate 2020-11-01
description Studies of the hyperfine anomaly has found a renewed interest with the recent development of techniques to study the properties of long chains of unstable nuclei. By using the hyperfine structure for determining the nuclear magnetic dipole moments, the hyperfine anomaly puts a limit to the accuracy. In this paper, the differential Breit–Rosenthal effect is calculated for the <inline-formula><math display="inline"><semantics><mrow><mn>6</mn><mi>s</mi><mn>6</mn><mi>p</mi></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><msub><mi>P</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> states in <inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>199</mn></msup><mi>H</mi><mi>g</mi></mrow></semantics></math></inline-formula> as a function of the change in nuclear radii, using the MCDHF code, GRASP2018. The differential Breit–Rosenthal effect was found to be of the order of <inline-formula><math display="inline"><semantics><mrow><mn>0.1</mn><mo>%</mo><mi mathvariant="normal">f</mi><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, in most cases much less than the Bohr-Weisskopf effect. The results also indicate that large calculations might not be necessary, with the present accuracy of the experimental values for the hyperfine anomaly.
topic hyperfine anomaly
breit-rosenthal effect
mercury
MCDHF
nuclear charge radius
url https://www.mdpi.com/2218-2004/8/4/86
work_keys_str_mv AT tarjeiheggset calculationofthedifferentialbreitrosenthaleffectinthe6isi6ipisup3supipisub12substatesofhg
AT jonasrpersson calculationofthedifferentialbreitrosenthaleffectinthe6isi6ipisup3supipisub12substatesofhg
_version_ 1724413253312839680