Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg
Studies of the hyperfine anomaly has found a renewed interest with the recent development of techniques to study the properties of long chains of unstable nuclei. By using the hyperfine structure for determining the nuclear magnetic dipole moments, the hyperfine anomaly puts a limit to the accuracy....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Atoms |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-2004/8/4/86 |
id |
doaj-6ed0aee556004896b1ee0a9a8254bfe7 |
---|---|
record_format |
Article |
spelling |
doaj-6ed0aee556004896b1ee0a9a8254bfe72020-11-28T00:02:18ZengMDPI AGAtoms2218-20042020-11-018868610.3390/atoms8040086Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of HgTarjei Heggset0Jonas R. Persson1Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayDepartment of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayStudies of the hyperfine anomaly has found a renewed interest with the recent development of techniques to study the properties of long chains of unstable nuclei. By using the hyperfine structure for determining the nuclear magnetic dipole moments, the hyperfine anomaly puts a limit to the accuracy. In this paper, the differential Breit–Rosenthal effect is calculated for the <inline-formula><math display="inline"><semantics><mrow><mn>6</mn><mi>s</mi><mn>6</mn><mi>p</mi></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><msub><mi>P</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> states in <inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>199</mn></msup><mi>H</mi><mi>g</mi></mrow></semantics></math></inline-formula> as a function of the change in nuclear radii, using the MCDHF code, GRASP2018. The differential Breit–Rosenthal effect was found to be of the order of <inline-formula><math display="inline"><semantics><mrow><mn>0.1</mn><mo>%</mo><mi mathvariant="normal">f</mi><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, in most cases much less than the Bohr-Weisskopf effect. The results also indicate that large calculations might not be necessary, with the present accuracy of the experimental values for the hyperfine anomaly.https://www.mdpi.com/2218-2004/8/4/86hyperfine anomalybreit-rosenthal effectmercuryMCDHFnuclear charge radius |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tarjei Heggset Jonas R. Persson |
spellingShingle |
Tarjei Heggset Jonas R. Persson Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg Atoms hyperfine anomaly breit-rosenthal effect mercury MCDHF nuclear charge radius |
author_facet |
Tarjei Heggset Jonas R. Persson |
author_sort |
Tarjei Heggset |
title |
Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg |
title_short |
Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg |
title_full |
Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg |
title_fullStr |
Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg |
title_full_unstemmed |
Calculation of the Differential Breit–Rosenthal Effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> States of Hg |
title_sort |
calculation of the differential breit–rosenthal effect in the 6<i>s</i>6<i>p</i> <sup>3</sup><i>p</i><sub>1,2</sub> states of hg |
publisher |
MDPI AG |
series |
Atoms |
issn |
2218-2004 |
publishDate |
2020-11-01 |
description |
Studies of the hyperfine anomaly has found a renewed interest with the recent development of techniques to study the properties of long chains of unstable nuclei. By using the hyperfine structure for determining the nuclear magnetic dipole moments, the hyperfine anomaly puts a limit to the accuracy. In this paper, the differential Breit–Rosenthal effect is calculated for the <inline-formula><math display="inline"><semantics><mrow><mn>6</mn><mi>s</mi><mn>6</mn><mi>p</mi></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>3</mn></msup><msub><mi>P</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> states in <inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mn>199</mn></msup><mi>H</mi><mi>g</mi></mrow></semantics></math></inline-formula> as a function of the change in nuclear radii, using the MCDHF code, GRASP2018. The differential Breit–Rosenthal effect was found to be of the order of <inline-formula><math display="inline"><semantics><mrow><mn>0.1</mn><mo>%</mo><mi mathvariant="normal">f</mi><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, in most cases much less than the Bohr-Weisskopf effect. The results also indicate that large calculations might not be necessary, with the present accuracy of the experimental values for the hyperfine anomaly. |
topic |
hyperfine anomaly breit-rosenthal effect mercury MCDHF nuclear charge radius |
url |
https://www.mdpi.com/2218-2004/8/4/86 |
work_keys_str_mv |
AT tarjeiheggset calculationofthedifferentialbreitrosenthaleffectinthe6isi6ipisup3supipisub12substatesofhg AT jonasrpersson calculationofthedifferentialbreitrosenthaleffectinthe6isi6ipisup3supipisub12substatesofhg |
_version_ |
1724413253312839680 |