Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex $L_\infty$
It is known that the so-called elementary symmetric polynomials $R_n(x) = \int_{[0,1]}(x(t))^n\,dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space $L_\infty,$ which is dense in the Fr\'{e}chet algebra $H_{bs}(L_\infty)$ of all entire s...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2017-06-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1443 |