Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case
For dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2020-05-01
|
Series: | Mathematics in Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/mine.2020007/fulltext.html |
id |
doaj-6d4356af011146a78be5d18d0a9e1839 |
---|---|
record_format |
Article |
spelling |
doaj-6d4356af011146a78be5d18d0a9e18392020-11-25T03:04:29ZengAIMS PressMathematics in Engineering2640-35012020-05-012111914010.3934/mine.2020007Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional caseRupert L. Frank0Tobias König1Hynek Kovařík21 Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany 2 Mathematics 253-37, Caltech, Pasadena, CA 91125, USA1 Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany3 DICATAM, Sezione di Matematica, Università degli Studi di Brescia, Via Branze 38-25123 Brescia, ItalyFor dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-2}$ is the critical Sobolev exponent, $\Omega \subset \mathbb{R}^N$ is a bounded open set and $V:\overline{\Omega}\to \mathbb{R}$ is a continuous function. We compute the asymptotics of $S(0) - S(\epsilon V)$ to leading order as $\epsilon \to 0+$. We give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular, we characterize the concentration points as being extrema of a quotient involving the Robin function. This complements the results from our recent paper in the case $N = 3$.https://www.aimspress.com/article/10.3934/mine.2020007/fulltext.htmlbrezis–nirenberg problemenergy asymptoticminimizing sequencesblow-up |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rupert L. Frank Tobias König Hynek Kovařík |
spellingShingle |
Rupert L. Frank Tobias König Hynek Kovařík Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case Mathematics in Engineering brezis–nirenberg problem energy asymptotic minimizing sequences blow-up |
author_facet |
Rupert L. Frank Tobias König Hynek Kovařík |
author_sort |
Rupert L. Frank |
title |
Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case |
title_short |
Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case |
title_full |
Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case |
title_fullStr |
Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case |
title_full_unstemmed |
Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case |
title_sort |
energy asymptotics in the brezis–nirenberg problem: the higher-dimensional case |
publisher |
AIMS Press |
series |
Mathematics in Engineering |
issn |
2640-3501 |
publishDate |
2020-05-01 |
description |
For dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-2}$ is the critical Sobolev exponent, $\Omega \subset \mathbb{R}^N$ is a bounded open set and $V:\overline{\Omega}\to \mathbb{R}$ is a continuous function. We compute the asymptotics of $S(0) - S(\epsilon V)$ to leading order as $\epsilon \to 0+$. We give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular, we characterize the concentration points as being extrema of a quotient involving the Robin function. This complements the results from our recent paper in the case $N = 3$. |
topic |
brezis–nirenberg problem energy asymptotic minimizing sequences blow-up |
url |
https://www.aimspress.com/article/10.3934/mine.2020007/fulltext.html |
work_keys_str_mv |
AT rupertlfrank energyasymptoticsinthebrezisnirenbergproblemthehigherdimensionalcase AT tobiaskonig energyasymptoticsinthebrezisnirenbergproblemthehigherdimensionalcase AT hynekkovarik energyasymptoticsinthebrezisnirenbergproblemthehigherdimensionalcase |
_version_ |
1724681556936622080 |