Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case

For dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-...

Full description

Bibliographic Details
Main Authors: Rupert L. Frank, Tobias König, Hynek Kovařík
Format: Article
Language:English
Published: AIMS Press 2020-05-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/mine.2020007/fulltext.html
id doaj-6d4356af011146a78be5d18d0a9e1839
record_format Article
spelling doaj-6d4356af011146a78be5d18d0a9e18392020-11-25T03:04:29ZengAIMS PressMathematics in Engineering2640-35012020-05-012111914010.3934/mine.2020007Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional caseRupert L. Frank0Tobias König1Hynek Kovařík21 Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany 2 Mathematics 253-37, Caltech, Pasadena, CA 91125, USA1 Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany3 DICATAM, Sezione di Matematica, Università degli Studi di Brescia, Via Branze 38-25123 Brescia, ItalyFor dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-2}$ is the critical Sobolev exponent, $\Omega \subset \mathbb{R}^N$ is a bounded open set and $V:\overline{\Omega}\to \mathbb{R}$ is a continuous function. We compute the asymptotics of $S(0) - S(\epsilon V)$ to leading order as $\epsilon \to 0+$. We give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular, we characterize the concentration points as being extrema of a quotient involving the Robin function. This complements the results from our recent paper in the case $N = 3$.https://www.aimspress.com/article/10.3934/mine.2020007/fulltext.htmlbrezis–nirenberg problemenergy asymptoticminimizing sequencesblow-up
collection DOAJ
language English
format Article
sources DOAJ
author Rupert L. Frank
Tobias König
Hynek Kovařík
spellingShingle Rupert L. Frank
Tobias König
Hynek Kovařík
Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case
Mathematics in Engineering
brezis–nirenberg problem
energy asymptotic
minimizing sequences
blow-up
author_facet Rupert L. Frank
Tobias König
Hynek Kovařík
author_sort Rupert L. Frank
title Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case
title_short Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case
title_full Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case
title_fullStr Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case
title_full_unstemmed Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case
title_sort energy asymptotics in the brezis–nirenberg problem: the higher-dimensional case
publisher AIMS Press
series Mathematics in Engineering
issn 2640-3501
publishDate 2020-05-01
description For dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-2}$ is the critical Sobolev exponent, $\Omega \subset \mathbb{R}^N$ is a bounded open set and $V:\overline{\Omega}\to \mathbb{R}$ is a continuous function. We compute the asymptotics of $S(0) - S(\epsilon V)$ to leading order as $\epsilon \to 0+$. We give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular, we characterize the concentration points as being extrema of a quotient involving the Robin function. This complements the results from our recent paper in the case $N = 3$.
topic brezis–nirenberg problem
energy asymptotic
minimizing sequences
blow-up
url https://www.aimspress.com/article/10.3934/mine.2020007/fulltext.html
work_keys_str_mv AT rupertlfrank energyasymptoticsinthebrezisnirenbergproblemthehigherdimensionalcase
AT tobiaskonig energyasymptoticsinthebrezisnirenbergproblemthehigherdimensionalcase
AT hynekkovarik energyasymptoticsinthebrezisnirenbergproblemthehigherdimensionalcase
_version_ 1724681556936622080