Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case

For dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-...

Full description

Bibliographic Details
Main Authors: Rupert L. Frank, Tobias König, Hynek Kovařík
Format: Article
Language:English
Published: AIMS Press 2020-05-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/mine.2020007/fulltext.html