Semantic Segmentation of Aerial Imagery via Split-Attention Networks with Disentangled Nonlocal and Edge Supervision
In this work, we propose a new deep convolution neural network (DCNN) architecture for semantic segmentation of aerial imagery. Taking advantage of recent research, we use split-attention networks (ResNeSt) as the backbone for high-quality feature expression. Additionally, a disentangled nonlocal (D...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/6/1176 |