Consensus Tracking via Iterative Learning for Multi-Agent Systems With Random Initial States
In this paper, a distributed consensus iterative learning control algorithm is proposed for the finite-time consensus tracking of multi-agent systems with random initial states. The tracking errors from the agent itself and its neighbours are applied to successively rectify the control protocol when...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9272965/ |