A Deep Transfer Model With Wasserstein Distance Guided Multi-Adversarial Networks for Bearing Fault Diagnosis Under Different Working Conditions
In recent years, intelligent fault diagnosis technology with the deep learning algorithm has been widely used in the manufacturing industry for substituting time-consuming human analysis method to enhance the efficiency of fault diagnosis. The rolling bearing as the connection between the rotor and...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8713860/ |