Methylation‐associated miR‐193b silencing activates master drivers of aggressive prostate cancer
Epigenetic silencing of miRNA is a primary mechanism of aberrant miRNA expression in cancer, and hypermethylation of miRNA promoters has been reported to contribute to prostate cancer initiation and progression. Recent data have shown that the miR‐193b promoter is hypermethylated in prostate cancer...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-09-01
|
Series: | Molecular Oncology |
Subjects: | |
Online Access: | https://doi.org/10.1002/1878-0261.12536 |
id |
doaj-68afe51bc4754a7eaf9d362267c6ab6a |
---|---|
record_format |
Article |
spelling |
doaj-68afe51bc4754a7eaf9d362267c6ab6a2020-11-25T03:58:18ZengWileyMolecular Oncology1574-78911878-02612019-09-011391944195810.1002/1878-0261.12536Methylation‐associated miR‐193b silencing activates master drivers of aggressive prostate cancerYing Z. Mazzu0Yuki Yoshikawa1Subhiksha Nandakumar2Goutam Chakraborty3Joshua Armenia4Lina E. Jehane5Gwo‐Shu Mary Lee6Philip W. Kantoff7Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USADepartment of Medicine Memorial Sloan Kettering Cancer Center New York New York USACenter for Molecular Oncology Memorial Sloan Kettering Cancer Center New York New York USADepartment of Medicine Memorial Sloan Kettering Cancer Center New York New York USACenter for Molecular Oncology Memorial Sloan Kettering Cancer Center New York New York USADepartment of Medicine Memorial Sloan Kettering Cancer Center New York New York USADepartment of Medical Oncology Dana‐Farber Cancer Institute Boston Massachusetts USADepartment of Medicine Memorial Sloan Kettering Cancer Center New York New York USAEpigenetic silencing of miRNA is a primary mechanism of aberrant miRNA expression in cancer, and hypermethylation of miRNA promoters has been reported to contribute to prostate cancer initiation and progression. Recent data have shown that the miR‐193b promoter is hypermethylated in prostate cancer compared with normal tissue, but studies assessing its functional significance have not been performed. We aimed to elucidate the function of miR‐193b and identify its critical targets in prostate cancer. We observed an inverse correlation between miR‐193b level and methylation of its promoter in The Cancer Genome Atlas (TCGA) cohort. Overexpression of miR‐193b in prostate cancer cell lines inhibited invasion and induced apoptosis. We found that a majority of the top 150 genes downregulated when miR‐193b was overexpressed in liposarcoma are overexpressed in metastatic prostate cancer and that 41 miR‐193b target genes overlapped with the 86 genes in the aggressive prostate cancer subtype 1 (PCS1) signature. Overexpression of miR‐193b led to the inhibition of the majority of the 41 genes in prostate cancer cell lines. High expression of the 41 genes was correlated with recurrence of prostate cancer. Knockdown of miR‐193b targets FOXM1 and RRM2 in prostate cancer cells phenocopied overexpression of miR‐193b. Dual treatment with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors decreased miR‐193b promoter methylation and restored inhibition of FOXM1 and RRM2. Our data suggest that silencing of miR‐193b through promoter methylation may release the inhibition of PCS1 genes, contributing to prostate cancer progression and suggesting a possible therapeutic strategy for aggressive prostate cancer.https://doi.org/10.1002/1878-0261.12536miR‐193bFOXM1RRM2prostate cancerDNA methylation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ying Z. Mazzu Yuki Yoshikawa Subhiksha Nandakumar Goutam Chakraborty Joshua Armenia Lina E. Jehane Gwo‐Shu Mary Lee Philip W. Kantoff |
spellingShingle |
Ying Z. Mazzu Yuki Yoshikawa Subhiksha Nandakumar Goutam Chakraborty Joshua Armenia Lina E. Jehane Gwo‐Shu Mary Lee Philip W. Kantoff Methylation‐associated miR‐193b silencing activates master drivers of aggressive prostate cancer Molecular Oncology miR‐193b FOXM1 RRM2 prostate cancer DNA methylation |
author_facet |
Ying Z. Mazzu Yuki Yoshikawa Subhiksha Nandakumar Goutam Chakraborty Joshua Armenia Lina E. Jehane Gwo‐Shu Mary Lee Philip W. Kantoff |
author_sort |
Ying Z. Mazzu |
title |
Methylation‐associated miR‐193b silencing activates master drivers of aggressive prostate cancer |
title_short |
Methylation‐associated miR‐193b silencing activates master drivers of aggressive prostate cancer |
title_full |
Methylation‐associated miR‐193b silencing activates master drivers of aggressive prostate cancer |
title_fullStr |
Methylation‐associated miR‐193b silencing activates master drivers of aggressive prostate cancer |
title_full_unstemmed |
Methylation‐associated miR‐193b silencing activates master drivers of aggressive prostate cancer |
title_sort |
methylation‐associated mir‐193b silencing activates master drivers of aggressive prostate cancer |
publisher |
Wiley |
series |
Molecular Oncology |
issn |
1574-7891 1878-0261 |
publishDate |
2019-09-01 |
description |
Epigenetic silencing of miRNA is a primary mechanism of aberrant miRNA expression in cancer, and hypermethylation of miRNA promoters has been reported to contribute to prostate cancer initiation and progression. Recent data have shown that the miR‐193b promoter is hypermethylated in prostate cancer compared with normal tissue, but studies assessing its functional significance have not been performed. We aimed to elucidate the function of miR‐193b and identify its critical targets in prostate cancer. We observed an inverse correlation between miR‐193b level and methylation of its promoter in The Cancer Genome Atlas (TCGA) cohort. Overexpression of miR‐193b in prostate cancer cell lines inhibited invasion and induced apoptosis. We found that a majority of the top 150 genes downregulated when miR‐193b was overexpressed in liposarcoma are overexpressed in metastatic prostate cancer and that 41 miR‐193b target genes overlapped with the 86 genes in the aggressive prostate cancer subtype 1 (PCS1) signature. Overexpression of miR‐193b led to the inhibition of the majority of the 41 genes in prostate cancer cell lines. High expression of the 41 genes was correlated with recurrence of prostate cancer. Knockdown of miR‐193b targets FOXM1 and RRM2 in prostate cancer cells phenocopied overexpression of miR‐193b. Dual treatment with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors decreased miR‐193b promoter methylation and restored inhibition of FOXM1 and RRM2. Our data suggest that silencing of miR‐193b through promoter methylation may release the inhibition of PCS1 genes, contributing to prostate cancer progression and suggesting a possible therapeutic strategy for aggressive prostate cancer. |
topic |
miR‐193b FOXM1 RRM2 prostate cancer DNA methylation |
url |
https://doi.org/10.1002/1878-0261.12536 |
work_keys_str_mv |
AT yingzmazzu methylationassociatedmir193bsilencingactivatesmasterdriversofaggressiveprostatecancer AT yukiyoshikawa methylationassociatedmir193bsilencingactivatesmasterdriversofaggressiveprostatecancer AT subhikshanandakumar methylationassociatedmir193bsilencingactivatesmasterdriversofaggressiveprostatecancer AT goutamchakraborty methylationassociatedmir193bsilencingactivatesmasterdriversofaggressiveprostatecancer AT joshuaarmenia methylationassociatedmir193bsilencingactivatesmasterdriversofaggressiveprostatecancer AT linaejehane methylationassociatedmir193bsilencingactivatesmasterdriversofaggressiveprostatecancer AT gwoshumarylee methylationassociatedmir193bsilencingactivatesmasterdriversofaggressiveprostatecancer AT philipwkantoff methylationassociatedmir193bsilencingactivatesmasterdriversofaggressiveprostatecancer |
_version_ |
1724458127967911936 |